Asked  11 Months ago    Answers:  5   Viewed   182 times

I want to be able to differentiate array from pointers in overload resolution :

class string {
public:
        string(const char* c_str);

        template<int N>
        string(const char (&str) [N]);
};


int main() {
        const char* c_str = "foo";
        string foo(c_str);      // ok will call string(const char*)

        string bar("bar");      // call string(const char*) instead of the array version
}

The best I have found so far is to use a reference to the pointer instead of a pointer :

class string {
public:
        string(const char*& c_str);

        template<int N>
        string(const char (&str) [N]);
};


int main() {
        const char* c_str = "foo";
        string foo(c_str);      // ok will call string(const char*)
        string bar("bar");      // ok, will call the array version
}

it's not exactly the same thing and I want to know if a better way exist

 Answers

1

You need to make the first overload a poorer choice when both are viable. Currently they are a tie on conversion ranking (both are "Exact Match"), and then the tie is broken because non-templates are preferred.

This ought to make the conversion ranking worse:

struct stg
{
    struct cvt { const char* p; cvt(const char* p_p) : p(p_p) {} };

    // matches const char*, but disfavored in overload ranking
    stg(cvt c_str); // use c_str.p inside :(  Or add an implicit conversion

    template<int N>
    stg(const char (&str) [N]);
};
Saturday, July 3, 2021
 
Fanda
 
2

Here's the exact language from the C standard (n1256):

6.3.2.1 Lvalues, arrays, and function designators
...
3 Except when it is the operand of the sizeof operator or the unary & operator, or is a string literal used to initialize an array, an expression that has type ‘‘array of type’’ is converted to an expression with type ‘‘pointer to type’’ that points to the initial element of the array object and is not an lvalue. If the array object has register storage class, the behavior is undefined.

The important thing to remember here is that there is a difference between an object (in C terms, meaning something that takes up memory) and the expression used to refer to that object.

When you declare an array such as

int a[10];

the object designated by the expression a is an array (i.e., a contiguous block of memory large enough to hold 10 int values), and the type of the expression a is "10-element array of int", or int [10]. If the expression a appears in a context other than as the operand of the sizeof or & operators, then its type is implicitly converted to int *, and its value is the address of the first element.

In the case of the sizeof operator, if the operand is an expression of type T [N], then the result is the number of bytes in the array object, not in a pointer to that object: N * sizeof T.

In the case of the & operator, the value is the address of the array, which is the same as the address of the first element of the array, but the type of the expression is different: given the declaration T a[N];, the type of the expression &a is T (*)[N], or pointer to N-element array of T. The value is the same as a or &a[0] (the address of the array is the same as the address of the first element in the array), but the difference in types matters. For example, given the code

int a[10];
int *p = a;
int (*ap)[10] = &a;

printf("p = %p, ap = %pn", (void *) p, (void *) ap);
p++;
ap++;
printf("p = %p, ap = %pn", (void *) p, (void *) ap);

you'll see output on the order of

p = 0xbff11e58, ap = 0xbff11e58
p = 0xbff11e5c, ap = 0xbff11e80

IOW, advancing p adds sizeof int (4) to the original value, whereas advancing ap adds 10 * sizeof int (40).

More standard language:

6.5.2.1 Array subscripting

Constraints

1 One of the expressions shall have type ‘‘pointer to object type’’, the other expression shall have integer type, and the result has type ‘‘type’’.

Semantics

2 A postfix expression followed by an expression in square brackets [] is a subscripted designation of an element of an array object. The definition of the subscript operator [] is that E1[E2] is identical to (*((E1)+(E2))). Because of the conversion rules that apply to the binary + operator, if E1 is an array object (equivalently, a pointer to the initial element of an array object) and E2 is an integer, E1[E2] designates the E2-th element of E1 (counting from zero).

Thus, when you subscript an array expression, what happens under the hood is that the offset from the address of the first element in the array is computed and the result is dereferenced. The expression

a[i] = 10;

is equivalent to

*((a)+(i)) = 10;

which is equivalent to

*((i)+(a)) = 10;

which is equivalent to

 i[a] = 10;

Yes, array subscripting in C is commutative; for the love of God, never do this in production code.

Since array subscripting is defined in terms of pointer operations, you can apply the subscript operator to expressions of pointer type as well as array type:

int *p = malloc(sizeof *p * 10);
int i;
for (i = 0; i < 10; i++)
  p[i] = some_initial_value(); 

Here's a handy table to remember some of these concepts:

Declaration: T a[N];

Expression    Type    Converts to     Value
----------    ----    ------------    -----
         a    T [N]   T *             Address of the first element in a;
                                        identical to writing &a[0]
        &a    T (*)[N]                Address of the array; value is the same
                                        as above, but the type is different
  sizeof a    size_t                  Number of bytes contained in the array
                                        object (N * sizeof T)
        *a    T                       Value at a[0]
      a[i]    T                       Value at a[i]
     &a[i]    T *                     Address of a[i] 

Declaration: T a[N][M];

Expression     Type        Converts to     Value
----------     ----        ------------    -----
          a    T [N][M]    T (*)[M]        Address of the first subarray (&a[0])
         &a    T (*)[N][M]                 Address of the array (same value as
                                             above, but different type)
   sizeof a    size_t                      Number of bytes contained in the
                                             array object (N * M * sizeof T)
         *a    T [M]      T *              Value of a[0], which is the address
                                             of the first element of the first subarray
                                             (same as &a[0][0])
       a[i]    T [M]      T *              Value of a[i], which is the address
                                             of the first element of the i'th subarray
      &a[i]    T (*)[M]                    Address of the i-th subarray; same value as
                                             above, but different type
sizeof a[i]    size_t                      Number of bytes contained in the i'th subarray
                                             object (M * sizeof T)
      *a[i]    T                           Value of the first element of the i'th 
                                             subarray (a[i][0])
    a[i][j]    T                           Value at a[i][j]
   &a[i][j]    T *                         Address of a[i][j]

Declaration: T a[N][M][O];

Expression        Type             Converts to
----------        ----             -----------
         a        T [N][M][O]      T (*)[M][O]
        &a        T (*)[N][M][O]
        *a        T [M][O]         T (*)[O]
      a[i]        T [M][O]         T (*)[O]
     &a[i]        T (*)[M][O]
     *a[i]        T [O]            T *
   a[i][j]        T [O]            T *
  &a[i][j]        T (*)[O]
  *a[i][j]        T 
a[i][j][k]        T

From here, the pattern for higher-dimensional arrays should be clear.

So, in summary: arrays are not pointers. In most contexts, array expressions are converted to pointer types.

Tuesday, June 1, 2021
 
Eugenie
 
1

The answer is in the C# specification section 7.3 and section 7.5.5.1

I broke down the steps used for choosing the method to invoke.

  • First, the set of all accessible members named N (N=Foo) declared in T (T=class D) and the base types of T (class C) is constructed. Declarations that include an override modifier are excluded from the set (D.Foo(B) is exclude)

    S = { C.Foo(B) ; D.Foo(A) }
    
  • The set of candidate methods for the method invocation is constructed. Starting with the set of methods associated with M, which were found by the previous member lookup, the set is reduced to those methods that are applicable with respect to the argument list AL (AL=B). The set reduction consists of applying the following rules to each method T.N in the set, where T (T=class D) is the type in which the method N (N=Foo) is declared:

    • If N is not applicable with respect to AL (Section 7.4.2.1), then N is removed from the set.

      • C.Foo(B) is applicable with respect to AL
      • D.Foo(A) is applicable with respect to AL

        S = { C.Foo(B) ; D.Foo(A) }
        
    • If N is applicable with respect to AL (Section 7.4.2.1), then all methods declared in a base type of T are removed from the set. C.Foo(B) is removed from the set

          S = { D.Foo(A) }
      

At the end the winner is D.Foo(A).


If the abstract method is removed from C

If the abstract method is removed from C, the initial set is S = { D.Foo(B) ; D.Foo(A) } and the overload resolution rule must be used to select the best function member in that set.

In this case the winner is D.Foo(B).

Thursday, June 10, 2021
 
jenny
 
1

Because p is of type int *, so *p is of type int, which is apparently 4 bytes wide on your implementation.


And use %zu for printing size_t (what sizeof yields) if you don't want your program to invoke undefined behavior.

Tuesday, June 15, 2021
 
Shobit
 
3

The first part of your question (without the List-specific overload) is easy. Let's consider the Array call, because it works the same for both calls:

First, type inference produces two possible generic implementations of the call: Print<Person[]>(Person[] items) and Print<Person>(IEnumerable<Person> items).

Then overload resolution kicks in and the first one wins, because the second requires an implicit conversion, where the first one does not (see §7.4.2.3 of the C# spec). The same mechanism works for the List variant.

With the added overload, a third possible overload is generated with the List call: Print<Person>(List<Person> items). The argument is the same as with the Print<List<Person>>(List<Person> items) but again, section 7.4.3.2 provides the resolution with the language

Recursively, a constructed type is more specific than another constructed type (with the same number of type arguments) if at least one type argument is more specific and no type argument is less specific than the corresponding type argument in the other.

So the Print<Person> overload is more specific than the Print<List<Person>> overload and the List version wins over the IEnumerable because it requires no implicit conversion.

Saturday, July 3, 2021
 
Only authorized users can answer the question. Please sign in first, or register a free account.
Not the answer you're looking for? Browse other questions tagged :